Homework 2

(Due date: September 26th)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (36 PTS)

Calculate the result (provide the 32-bit result) of the following operations with 32-bit floating point numbers. Truncate the
results when required. When doing fixed-point division, use 8 fractional bits. Show your procedure.

✓	3DE38C80 + 3A80D980	✓ 80A18000 - 03CEC000	✓	7A09C000 × 8BEE0000	✓	7A390000 ÷ C8400000
\checkmark	80123000 + 804E8000	✓ 09DECAF0 - 7AD90000	\checkmark	FA19D800 × CD100000	\checkmark	7F800000 ÷ CAB34C00
✓	7FBEADED + FACADE90	✓ F0B1ABEE - 7F800000	\checkmark	0B094000 × 8FBEE000	\checkmark	C9680000 ÷ 80700000

PROBLEM 2 (8 PTS)

• Complete the table for the following DFX formats:

DFX format	p_0	<i>p</i> ₁	Number of bits of significand	Boundary value	num0 range	num1 range	Dynamic Range (dB)
8_4_2							
12_7_5							
16_8_3							
24_15_9							

PROBLEM 3 (16 PTS)

Convert the following signed fixed-point numbers in format [16 8] to the dual fixed point format 16_8_3. If more bits are required, you are allowed to use the format 17_8_3.

FX	FA.1C	0A.B7	89.7C	9C.1F	83.FE	7E.25	B1.4B	6D.E9
DFX								

PROBLEM 4 (30 PTS)

• Calculate the result of the following operations where the numbers are represented in dual fixed-point arithmetic. Note that the results must be in the same format. Include an overflow bit when necessary.

DFX Format: 8_4_2	Result	overflow		Result	overflow
FA+0B			F9-90		
79+43			A2+EC		
C4+C3			34+FC		

DFX Format 16_8_4	Result	overflow		Result	overflow
FA2A+0A0E			C010+F2C4		
A004+B1C3			F93A-0932		
6A9A-F34C			207F-31DE		

PROBLEM 5 (10 PTS)

• Complete the timing diagram of the following iterative unsigned multiplier (N = 4, M = 4). Register: *sclr*: synchronous clear. Here, if *sclr* = E = 1, the register contents are initialized to 0. Parallel access shift register: If E = 1: $s_l = 1 \rightarrow \text{Load}$, $s_l = 0 \rightarrow \text{Shift}$

